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Estimating 2-cycle fixed points of henon map
using backpropagation neural networks
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The objective of this research is the presentation of a feed-forward neural network capable of estimating the 2-cycle
fixed points of Henon map by solving their defining nonlinear algebraic system. The network uses the back propagation
algorithm and solves the aforementioned system for a set of values of the parameters ˛ and ˇ of Henon map. Besides the
estimation of the fixed points, the paper includes the study of the network convergence and its speed for many different
initial conditions. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Artificial neural networks are used among other tasks, to solve algebraic systems of linear and nonlinear equations. Typical references
in this field include the work of Mathia and Saeks [1] that used recurrent neural networks to solve nonlinear equations, Mishra and Kalra
[2] that used a modified Hopfield network to solve a nonlinear algebraic system of m equations with n unknowns, Luo and Han [3] that
used Hopfield networks to solve a nonlinear system transformed to a kind of quadratic optimization, and Li and Zeng [4] that used the
gradient descent rule with a variable step size to solve such systems at very rapid convergence and very high accuracy. It has to be
mentioned that besides the identification of fixed points of chaotic maps, artificial neural networks are used among other things for
modeling ([5] and [6]) as well as the control ([7] and [8]) of chaotic attractors.

In this paper, a back-propagation fully connected feed-forward neural network is used to estimate the 2-cycle fixed points of the
Henon map ([9] and [10]), a well-known dynamical system that depending on its parameter values, exhibits stable, periodic, as well as
chaotic behavior. This network solves the associated nonlinear algebraic system for different combinations of the values ˛ and ˇ, and
its convergence is studied for a set of different initial conditions. The next sections include a short description of the Henon map, a
detailed presentation of the associated neural network, and the description of the application of this network for the estimation of the
2-cycle fixed points of that map. The paper is concluded with presentation and analysis of typical experimental results.

2. Henon map

A typical and well-defined class of chaotic systems includes the so-called chaotic maps that exhibit chaotic behavior. In this work,
the focus is given to discrete chaotic maps defined in the discrete time domain and described by iterative functions. If such a map is
defined in an N dimensional state space, its mathematical description is given by a recursive equation in the form rnC1 D F.rn, �/,
where rn D fx1, x2, : : : , xNg is the state vector of the system and � D f˛,ˇ, � , : : : g is an optional parameter vector that appears in the
map’s defining equations.

One of the best known and commonly used chaotic maps is the Henon map [9, 11], a two-dimensional map described by the system
of recursive equations

xnC1 D yn � ˛x2
n C 1

ynC1 D ˇxn
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The Henon map depends on two parameters ˛ and ˇ; these parameters, for the canonical map that exhibits chaotic behavior, have
the values ˛ D 1.4 and ˇ D 0.3. On the other hand, for other values of those parameters, this map may be chaotic, intermittent, or
converging to a single periodic orbit.

To identify the m-cycle fixed points of the Henon map, one has to solve the equation p D F.m/.p, �/ where F is the mathematical
function describing the map and p is a point in the form pD .x, y/. It can be easily proven that, for the case mD 1, there are two saddle
fixed points .x1, y1/ and .x2, y2/ that can be estimated by solving the system of equations

˛x2C x � y D 1 and ˇx � y D 0

and their coordinates are given by the expressions
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These points appear only for the parameter region defined as ˛ > .ˇ � 1/2=4, while for the value ˛ D .ˇ � 1/2=4, a saddle node
bifurcation occurs, leading to a double root defined by the equation x D x1 D x2 D 2=.1 � ˇ/. On the other hand, the 2-cycle points
can be estimated by solving the system of equations

˛3x4 � 2˛2x2C .1� ˇ/3x � .1� ˇ/2C ˛ D 0

y D
ˇ

1� ˇ
.1� ˛x2/

This system has four real roots for parameter values in the region ˛ > 3.ˇ � 1/2=4. Regarding these roots, two of them, are the 1-cycle
fixed points identified in the previous step, while, the remaining two roots can be obtained by solving the equations

˛2x2 � ˛.1� ˇ/xC .1� ˇ/2 � ˛ D 0 (1)

y D
ˇ

1� ˇ

�
1� ˛x2

�
(2)

The roots of the first equation have the form

x1 D
1
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�
and

x2 D
1

2˛
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q
4˛ � 3.1� ˇ/2

�

as it can very easily be identified. Then, by substituting these values to the second equation, the associated y values can be estimated.
For the parameter values ˛ D 1.4 and ˇ D 0.3, the coordinates of the 1-cycle fixed points have the values

.x1, y1/D .C0.631354,C0.189406/

.x2, y2/D .�1.131354,�0.339406/

while the coordinates of the 2-cycle fixed points are estimated as follows

.x1, y1/D .C0.631354,C0.189406/

.x2, y2/D .�1.131354,�0.339406/

.x3, y3/D .�0.475800,C0.292739/

.x4, y4/D .C0.975800,�0.142739/

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013
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3. The neural model

The theoretical foundation for solving 2� 2 complete nonlinear algebraic systems in the form F1.x, y/D F2.x, y/D 0, where

F1.x, y/D ˛11x2C ˛12y2C ˛13xyC ˛14xC ˛15y � ˛16

F2.x, y/D ˛21x2C ˛22y2C ˛23xyC ˛24xC ˛25y � ˛26

can be found in [12], while an improved model of this network can be found in [13]. The main idea behind this approach is the construc-
tion of a neural network composed of summation and product units, which simulates exactly the nonlinear system under consideration
and find its roots via the classical back propagation approach. In a more detailed description, this network is composed of an input layer
with only one neuron with a constant input of unity, a hidden layer with two summation units associated with the first-order terms x
and y, a second hidden layer that generates all the linear as well as the nonlinear terms of the system, and an output layer that produces
as real outputs, the values of the expressions F1.x, y/ and F2.x, y/. It is clear that if the desired outputs of the network have a zero value,
then, the variable weights of the synapses that join the input neuron with the two neurons of the first hidden layer will contain the
components of one of the system roots. To estimate all roots of the system (the current version of the simulator supports only real
and not complex roots), we have to use different initial conditions, a procedure that allows the experimental estimation of the basin
of attraction for each system root. The activation function of the network neurons is the identity function for the input and hidden
neurons—an exception to this rule is the top neuron of the second hidden layer that uses the function f .x/D x2—and the hyperbolic
tangent function for the output neurons.

It can be very easily seen that the equations (1) and (2) that define the 2-cycle fixed points of the Henon map can be written as a 2�2
nonlinear system in the form

F1.x, y/D ˛2x2 � ˛.1� ˇ/xC .1� ˇ/2 � ˛ D 0 (3)

F2.x, y/D ˛ˇx2C .1� ˇ/y � ˇ D 0 (4)

This system is a special case of the 2�2 complete nonlinear algebraic system defined earlier. To solve this system, a new neural network
architecture is proposed; this architecture is presented in Figure 1, with the weight matrices W12, W23, and W34 between consecutive
layers to have the form
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By applying the classical back propagation algorithm, we obtain the following results:

Figure 1. The structure of the neural system that estimates the 2-cycle fixed points of the Henon map.
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3.1. Forward pass

The inputs to the second hidden layer are defined as

�
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�
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2 DW.2/

12 D y

while the corresponding outputs are given by the equations
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and produces the outputs
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Finally, the fourth (output) layer uses the inputs

�
.1/
4 D ˛2x2 � ˛.1� ˇ/xC .1� ˇ/2 � ˛ D F1.x, y/

�
.2/
4 D ˛ˇx2C .1� ˇ/y � ˇ D F2.x, y/

to generate the network output values
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where f .x/ D tanh.x/ is the activation function of the output neurons. It can be easily verified that �.1/4 D f ŒF1.x, y/� and �.2/4 D

f ŒF2.x, y/�.

3.2. Backward pass

In this stage, the delta values associated with the neurons of the output layer and the two hidden layers are estimated as follows—in
the following description for the sake of simplicity, we use the abbreviations F1 D F1.x, y/, F2 D F2.x, y/, and f D f .x/D tanh.x/.

The delta values for the two output neurons are estimated as
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while, in a similar way, the delta values for the neurons of the third layer have the form
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Finally, the delta values of the two neurons of the second layer are given by the equations

ı
.1/
2 D f 0

h
�
.1/
2

i 3X
jD1

W.1j/
23 ı

.j/
3 D ı

.1/
3 C ı

.2/
3 D

D�f .F1/
h

1� f 2.F1/
i h

2˛2xC ˛.ˇ � 1/
i
��f .F2/

h
1� f 2.F2/

i
.2˛ˇx/

ı
.2/
2 D f 0

h
�
.2/
2

i 3X
jD1

W.2j/
23 ı

.j/
3 D ı

.3/
3 D�f .F2/

h
1� f 2.F2/

i
.1� ˇ/

3.3. Correction of the synaptic weights

In this last stage of the back propagation algorithm, the two variable weights of the synapses between the first and the second layer
are updated according to the equations

W.1/
12 DW.1/

12 C �ı
.1/
2 and W.2/

12 DW.2/
12 C �ı

.2/
2

where � is the learning rate and ı.1/2 and ı.2/2 are the delta values of the two neurons of the second hidden layer estimated during the
backward phase.

3.4. Convergence analysis

In this section, we analyze the convergence property of the aforementioned algorithm.

Theorem 1
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be the corresponding system that defines the 2-cycle fixed points of the Henon map, as it has been presented in Section 3 [equations (3)

and (4)] where .x, y/ has been substituted by
�
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12 , W.2/

12

�
. If we apply the aforementioned algorithm and the condition˛ > 3.ˇ�1/2=4

holds, the algorithm converges to the one of the four roots of the system.

Proof
The LMS (Least Mean Square) error of the back propagation algorithm is given by the equation
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It can be easily proven that the first derivative of the hyperbolic tangent function f .x/D tanh.x/ satisfies the property f 0.x/D 1� f 2.x/

and because we have W.1/
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equation (8) using the aforementioned expressions is expanded as
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or in general form

@E
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and the weight update equation obtains the form
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which is the necessary condition for the convergence of the back propagation algorithm that proves the theorem. �

4. Experimental results

The proposed neural network structure was tested for many combinations of Henon map parameters ˛ and ˇ in the region 0.9 � ˛ �
1.5 and �0.5 � ˇ � 0.5 with a variation step�˛ D �ˇ D 0.1. For each pair .˛,ˇ/, the neural network was trained with a learning rate
of � D 0.2, a maximum number of iterations N D 10000, and initial weight values .x, y/ in the range �2 � x, y � 2 with variation step
�x D �y D 0.2. The emphasis was given to classical parameter combinations (˛,ˇ) associated with the chaotic region of the Henon
map, even though the network can work efficiently in any region (in fact, in this paper, we are not interested in the chaotic features of
Henon map but only in the nonlinear algebraic system associated with the 2-cycle points).

Table I contains the experimental results for the parameter values ˛ D 1.3, 1.4 and �0.5 � ˇ � 0.5. In some cases, the neu-
ral network could not converge to some root, which means that the associated pair of initial conditions .x, y/ belongs to the basin

Table I. Simulation results for best simulation runs for parameter values ˛ D 1.3, 1.4, and�0.5� ˇ � 0.5.

˛ D 1.3 ˛ D 1.4

b Xinit Yinit Xroot Yroot N b Xinit Yinit Xroot Yroot N

�0.5
No No No No No

�0.5
No No No No No

No No No No No No No No No No

�0.4
No No No No No

�0.4
No No No No No

No No No No No No No No No No

�0.3
0.2 �1.0 0.361325 �0.191602 187

�0.3
0.2 �0.2 0.204281 �0.217286 46

0.6 0.1 0.638675 �0.108397 281 1.4 �0.4 0.724289 �0.061284 77

�0.2
0.1 �0.2 0.100737 �0.164467 44

�0.2
�0.4 �0.2 0.024510 �0.166526 38

1.6 �0.4 0.822339 �0.020147 40 1.4 �0.2 0.832632 �0.004920 41

�0.1
�0.8 �0.2 �0.058844 �0.090449 49

�0.1
0.4 �0.4 �0.108416 �0.089413 50

1.0 0.1 0.904998 �0.005844 46 1.0 0.0 0.894131 0.010841 41

0.0
�0.2 0.1 �0.185861 0.0 10

0.0
�0.2 0.0 �0.218732 0.0 4

1.0 0.0 0.955092 0.0 11 0.8 0.0 0.933018 0.0 5

0.1
�1.0 0.2 �0.293973 0.098628 79

0.1
�0.8 0.2 �0.314446 0.095730 81

1.4 0.0 0.986281 �0.029397 74 1.2 0.0 0.957303 �0.031444 74

0.2
�0.4 0.2 �0.388875 0.200852 74

0.2
�0.6 0.2 �0.399404 0.194166 77

1.8 0.2 1.004260 �0.077775 79 1.6 0.4 0.970833 �0.079880 122

0.3
�1.0 0.4 �0.473584 0.303614 124

0.3
0.2 �0.4 �0.475800 0.292739 124

1.6 0.0 1.012046 �0.142075 138 0.6 �0.2 0.975800 �0.142739 131

0.4
�0.4 0.4 �0.549914 0.404581 158

0.4
�1.4 0.6 �0.545010 0.389432 119

0.4 �0.4 1.011453 �0.219965 178 0.8 1.2 0.973581 �0.218004 264

0.5
�1.2 0.6 �0.619039 0.501827 259

0.5
No No No No No

1.8 �0.2 1.003654 �0.309519 253 No No No No No

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013
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(a) (b)

(c) (d)

Figure 2. Graphical estimation of system roots and the associated basin of attraction for typical parameter value pairs.

Table II. Simulation results for Henon map and for parameter values ˛ D 1.4
and ˇ D 0.4.

Average STDDEV Average STDDEV
iterations iterations MSE MSE

Root1 484.8283 1116.572 9.39E-16 4.90239E-17
Root2 280.1500 0013.415 9.45E-16 5.03831E-17

Average STDDEV Average STDDEV
Xroot Xroot Yroot Yroot

Root1 �0.54501041 4.93577E-09 +0.389432723 7.2808E-08
Root2 +0.97358184 1.58114E-09 �0.218004091 3.1622E-09

STDDEV stands for Standard Deviation

of divergence. For each parameter combination, the associated row includes the initial conditions .Xinit, Yinit/, the estimated root
.Xroot, Yroot/, and the number of iterations associated with this run. In fact, this is the minimum number of iterations required for
the estimation of the root .Xroot, Yroot/ for the given parameter value pair .˛,ˇ/, and for this reason, the results of Table I refer to
the best run (with respect to the iteration number). The value of the mean square error (MSE) was practically zero (� 10�15)—this
zero MSE value is a powerful feature of the proposed simulator for all cases—while, the values of F1.Xroot, Yroot/ and F2.Xroot, Yroot/

was also too small (� 10�8) to be presented here. Therefore, the estimated values are identical with the theoretical ones, with
the discrepancy between the two values, to occur after the sixth decimal point, or even better. In all cases, the number of differ-
ent runs for each pair .˛,ˇ/ and for the specified ranges and variation steps for the variables .x, y/ was equal to 441. The graph-
ical representation of roots and the basin of attraction for the cases .˛,ˇ/ D .1.3, 0.2/, .1.3, 0, 3/, .1.4, 0.2/, .1.4, 0.3/ are shown in
Figure 2(a), 2(b), 2(c), and 2(d), respectively. In this figures, the roots are the intersection points between the red and the blue curves
that represent the equations (1) and (2), respectively, and the basin of attraction are denoted with the symbols ı and C for roots
1 and 2.

Table II contains the experimental results for a typical pair of values, and more specifically, the pair .˛,ˇ/D .1.4, 0.4/; however,
all the other pairs are characterized by the same behavior. The system roots for this pair are .x1, y1/ D .�0.545010, 0.389432/ and
.x2, y2/D .0.973581,�0.218004/. For each root, the table includes the average value and the standard deviation of the iteration num-
ber, the MSE as well as the estimated root .Xroot, Yroot/. It is interesting to note that the standard deviation of the parameters .Xroot, Yroot/

is practically zero (� 10�9) and therefore, all the initial conditions lead to the same value with a very high accuracy—up to the sixth
decimal point or even better.

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013
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(a)

(b)

Figure 3. The minimal iteration number (associated with the best run) for the values ˇ D �0.3,�0.2,�0.1, 0.0, 0.1, 0.2, 0.3, 0.4 and for the case ˛ D 1.3

and ˛D 1.4.

Figure 3 shows the variation of the minimal iteration number associated with the best run of the network for the set of values
ˇ D �0.3,�0.2,�0.1, 0.0, 0.1, 0.2, 0.3, 0.4 and for the case ˛ D 1.3 [Figure 3(a)] and ˛ D 1.4 [Figure 3(b)]. It is clear that the smaller the
iteration number, the larger the speed of convergence to the associated root. From this figure, it is clear that the 2-cycle fixed points
are identified more easily for small values of the ˇ parameter, with the case ˇ D 0 to be the best case. This fact is of course expected,
because for ˇ D 0, the equations of the nonlinear system are much simpler and more easily to be solved by the neural system.

Figure 4 represents the percentage of the initial conditions that belong to the basin of attraction for each root, as well as to the basin
of divergence. From this figure, it is clear that in all cases, a very large percentage leads to the one of the two available roots; the remain-
ing part of the bar—the black part—is associated with the percentage of points for which the network is not capable of identifying a
root; this means that the corresponding initial value pair .x, y/ belongs to the basin of infinity.

Figure 5, depicts graphically the sequence of points that eventually converged to some root for the values parameter ˛ D 1.2, 1.3, 1.4
and ˇ D 0.2, 0.3, 0.4, and for the initial conditions .x, y/D .1.5,�0.5/ [Figure 5(a)] and .x, y/D .0.5, 0.5/ [Figure 5(b)]. From this figure, it
is clear that for the same ˛ parameter, the three curves associated with the corresponding values of ˇ are quite similar.

After the presentation of the experimental results associated with the proposed method, let us proceed to a comparison between this
method and other well-known numerical methods with respect to their performance. Because the proposed algorithm is an iterative
one, we choose for this comparison well-known iterative numerical algorithms such as the trust-region-dogleg [14], the trust-region-
reflective [14], and the Levenberg–Marquardt algorithm [15, 16], as well as the multivariate Newton–Raphson method (NR) with partial
derivatives. The first three algorithms are supported by the fsolve function of the optimization toolbox of the MATLAB programming
environment, while the NR MATLAB implementation can be found in the literature—for a theoretical description of this algorithm, see,
for example, [17]. These algorithms were used to solve the problem using the initial conditions .xinit, yinit/ of Table I associated with the
best run (to save pages, this comparison is restricted only to the case ˛ D 1.3, because its extension to the case ˛ D 1.4 is straight-
forward). We have to note, however, that the NR algorithm could not converge for initial conditions xinit D 0 or yinit D 0, and for this
reason, these initial conditions for this algorithm were set to the value of 0.1.

The simulation results of these comparisons can be found in Table III. For each one of the tested algorithms, the associated row
includes the number of iterations required for the convergence to that root (because all algorithms estimated exactly the same roots—
at least for the first six decimal points—the coordinates of that roots are included only once). It is not difficult to note that even though
the neural solver gave the correct results and with the same accuracy, it requires more iterations than the other methods, because
of the small learning rate values that allow the network to converge (it is clear that these results can be improved by testing many
different learning rates until to find the best one). Besides this disadvantage of the neural-based approach (which, actually is not a
major issue because modern computing systems are characterized by very high speeds), the proposed method is easy in its imple-
mentation (because it uses the classical back propagation approach and therefore it computes the function values in the first pass and
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(a)

(b)

Figure 4. Percentage of initial conditions (in the form of stacked bars) that form the basin of attraction for each root as well as the basin of divergence for the

cases ˛D 1.3 [Figure 4(a)] and ˛D 1.4 [Figure 4(b)]. The labels of the vertical axis in both figures represent the associated value of the ˇ parameter.

(a) (b)

Figure 5. The sequence of consecutive points that finally converged to one of the system roots for parameter values ˛ D 1.2, 1.3, 1.4 and ˇ D 0.2, 0.3, 0.4, and

for the initial conditions .x, y/D .1.5,�0.5/ [Figure 5(a)] and .x, y/D .0.5, 0.5/. [Figure 5(b)].

the values of the partial derivatives via the estimation of ı parameters), in contrast with the other methods that are more difficult to
implement because they require a lot of mathematics and complicated operations such as Jacobian evaluations at specified points.

5. Conclusion

In this research, we used a back-propagation neural network to solve the nonlinear algebraic system associated with the 2-cycle points
of the Henon chaotic map, by using an algorithm that guarantees convergence. This algorithm was tested with many different values of
the parameters ˛ and ˇ, and it was studied with respect to its convergence and the speed of it, for a broad set of initial conditions. The
experiments show that the algorithm is characterized by a large speed of convergence to each one of the two available roots, for initial
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Table III. Simulation results for the parameter value˛ D 1.3 associated
with alternative numerical algorithms used for the identification of the
fixed points of the Henon map.

b x0 y0 Xroot Yroot TRDL TRR LM NR

�0.3 0.2 �1.0 0.361324 �0.191602 4 4 5 6
�0.3 0.6 0.0 0.638675 �0.108397 4 3 4 5
�0.2 1.6 �0.4 0.822339 �0.020147 5 5 6 3
�0.2 0.0 �0.2 0.100737 �0.164467 4 4 4 6
�0.1 �0.8 �0.2 �0.058844 �0.090499 4 5 5 6
�0.1 1.0 0.0 0.904998 0.005884 5 4 4 4
0.0 �0.2 0.0 �0.185861 0.000000 3 3 3 4
0.0 1.0 0.0 0.955092 0.000000 3 3 4 4
0.1 �1.0 0.2 �0.293973 0.098628 5 5 5 6
0.1 1.4 0.0 0.986281 �0.029397 4 4 5 5
0.2 �0.4 0, 2 �0.388875 0.200852 3 3 3 3
0.2 1.8 0.2 1.004260 �0.077775 7 5 6 5
0.3 �1.0 0.4 �0.473584 0.303613 4 4 5 5
0.3 1.6 0.0 1.012046 �0.142075 5 5 5 5
0.4 �0.4 0.4 �0.549914 0.404581 4 4 4 5
0.4 0.4 �0.4 1.011453 �0.219965 5 6 6 7
0.5 �1.2 0.6 �0.619039 0.501827 4 4 5 5
0.5 1.8 �0.2 1.003654 �0.309519 5 5 5 6

TRDL, trust-region-dogleg; TRR, trust-region-reflective; LM, Levenberg–
Marquardt; NR, Newton–Raphson.

conditions that belong to the same interval and for different values of the parameters ˛ and ˇ—for example, .x, y/D .�0.2 : 0.1,�2 : 2/
for root 1, and .x, y/ D .0.2 : 2,�2 : 2/ for the root 2. Furthermore, the algorithm exhibits a similar behavior regarding the estima-
tion of the final values. All these observations are very helpful in the further investigation of the Henon map behavior for the m-cycle
points .m� 3/.
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